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Abstract: - In this paper, stable direct and indirect decentralized adaptive fuzzy controls are proposed for a 
class of large-scale nonlinear systems with the strong interconnected. The feedback and adaptive 
mechanisms for each subsystem depend only upon local measurements to provide asymptotic tracking of a 
reference trajectory. In both approaches, the proposed controllers are used to approximate the unknown 
subsystems. In addition, each subsystem is able to adaptively compensate for interconnections without 
known bounds. Simulation results are given to illustrate the tracking performance of the proposed methods. 
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1 Introduction 
Decentralized adaptive control systems often arise 
from various complex situations where there exist 
physical limitations on information exchange among 
several systems for which there is insufficient 
capability to have a single control controller, and 
due to the physical configuration and high 
dimensionality of interconnected systems a 
centralized control is neither economically feasible 
nor even necessary. Therefore, the decentralized 
scheme is preferred in control design of large-scale 
interconnected system [1], [2], [9]. To control a 
large-scale system, one essential problem is how to 
handle the interactions among different systems. 
Intensive research has been devoted to the observer 
design for large-scale systems. Uncertainties in a 
large-scale system require the adaptive decentralized 
technique, for which many decentralized adaptive 
schemes have been developed, including the model 
reference adaptive control [1],[4], and nonlinear 
control with a special class of interconnections [7]. 
These approaches focus on stabilisation, where the 
dynamics of subsystems are assumed to be known or 
to be linear with a set of unknown parameters. 
However, in practice, large-scale systems may 
contain significant uncertainties, and/or with 
unknown parameters in nonlinear forms and 
unknown structures. 
     Fuzzy logic control as one of the most useful 
approaches for utilizing expert knowledge, has been 
an active field of research the past decade [8],[11]. 
Fuzzy logic control is generally applicable to plants  
 

 
that are mathematically poorly modelled and where 
experienced operators are available for providing 
qualitative guidance. The most important advantage 
of fuzzy-logic-control schemes lies in the fact that the 
developed controllers can deal with increasingly 
complex systems and controllers without precise 
knowledge of the model structure of the underlying 
system dynamic. Recently there have been significant 
research efforts on these issues in fuzzy control 
system [8],[11],[12] but these approaches work only 
for large-scale systems with a known or linear 
dynamics with a set of unknown parameters and 
bounds interconnections. In practice, however, not all 
states are usually available. 
     This paper presents two approaches which can 
easily tackle the output tracking control problem of a 
class of large-scale nonlinear system with unknown 
interconnections bounds. A direct adaptive approach 
approximates unknown control laws required to 
stabilize each subsystem, while an indirect adaptive is 
provided which identifies the isolated subsystem 
dynamics to produce a stabilizing controller. Both 
approaches ensure asymptotic tracking using only 
local measurement. 
     The organization of this paper is as follows: 
section 2 describes the problem under investigation; 
section 3, the direct adaptive decentralized control; 
while in section 4, we introduce the indirect 
approach. Experimental results are then used to 
demonstrate the effectiveness of the proposed 
approaches is presented in section 5, with a 
conclusion given in section 6. 
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2 Problem Formulation  
Consider a class of nonlinear interconnected SISO 
subsystems iS  ),...,2,1( Ni = described as follows: 













=

∆++=

=

1,

,

2,1,

  )()(  )(

ii

iiiiiiini

ii

xy

xuxgxfx

xx

&

M

&

 (1) 

where TT
N

TT xxxx ],...,,[ 21= in
ix ℜ∈ , ,  is the global 

state vector, ℜ∈)(tui  is the control signal input and 
ℜ∈iy  is the output of the plant for the subsystem 

iS . The functions (.)if and (.)ig  are unknown and 
nonlinear, and ℜ∈∆ )(xi ,  are interconnection 
among subsystemsunknown ( Ni ,...,2,1= ). 
     The tracking error for iS  is defined by 

iiri yye −=0 . Our objective is to design an adaptive 
control for each subsystem which will cause the 
output iy  to track a desired output trajectory iry  

)0.,,( 0 →ieei in the presence of the strong 
interconnections using only local measurements. 
 
Assumption 1: Let the scalars ijq  quantify the 
strength of the interconnections and the output 
vector for the thi subsystem be defined by 

Td
iiii ieee ]...,  ,e  ,[ )1(
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interconnections satisfy:  
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where 2 .   is the Euclidean vector norm. This 
assumption on the interconnections can be satisfied 
by a variety of decentralized nonlinear systems. For 
instance, in [10] it is shown to be satisfied for an 
intervehicle spacing regulation problem in a platoon 
of an automated highway system. 
Subsystem (1) can be expressed as:  
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Assume that the given reference iry is bounded and 
have up to 1−id  bounded derivatives. The reference 

vector is denoted as Td
iriririr iyyyyY ]  ,...,,,[ )1(

ir
−= &&& . 

Define the tracking error of the thi subsystem as 

iiri yye −=0 . Then the error vector of the thi  

subsystem is given by Td
iiii ieee ]...,  ,e  ,[ )1(
000

−= & . 

It is desired that the output error of the thi subsystem 
follow  0... 00,
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has its roots in the open left-half complex plane (in 
Hurwitz). 
If the subsystem iS  is well known ) 0)(( ≠ii xg and 
free of external disturbances; )0),...,,(( 21 =∆ Ni xxx ,  
then the primary control should be designed to have 
the following idealized control law: 

))((
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x
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In spite of the primary control (6) which 
mathematically cancels the given system and then 
places it  in a stabilizing part, so as to guarantee 

0lim =
∞→

i
t

e , it is clear that, in practice, an exact 

cancellation of the given system nonlinearity is 
theoretically unrealizable and physically impossible. 
Thus, in this study, the direct adaptive approach 
implements an adaptive fuzzy system to approximate 
the idealized control action, and with the indirect 
approach we approximate the unknown dynamics for 
each subsystem (   )( ii xf and  )( ii xg ). 
 
 
3 Direct adaptive fuzzy decentralized 
control 
In this section, a direct adaptive output-feedback 
fuzzy decentralized controller is designed, with 
guaranteed stability of the integrated closed loop 
system.  
Assume that in subsystem (1) 0)( ≠ii xg . The direct 
adaptive controller is designed as: 

))()((),( 1
ihii

T
iiiiiiii ubpetaxgxuu ++= −θ  (7) 

where )(),( ii
T
iiii xxu ϕθθ = , Tm

iiii
i ],...,,[ 21 θθθθ = are 

parameter vectors and T
miiii i

],...,,[(.) ,2,1, ϕϕϕϕ =  is a 

regressive vector with regressor l
iϕ  ( iml ≤≤1 , 

where im is the number of rules), which is defined as 

a fuzzy basis function [5]. The term ii
T
ii bpeta )(  is 

used to compensate unknown effects from the 
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interconnections ( ii xdd
ip ℜ∈ is a positive definite 

matrix defined by a Lyapunov matrix equation and 
id

ib ℜ∈  is a vector), and ihu .is auxiliary control 
compensation. 
Substituting (7) to (1), and adding *)( iii uxg  and then 

subtracting *)( iii uxg  on the right-hand side of (1), 
we obtain, 
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The error dynamics for the thi  subsystem may be 
expressed as: 
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Define the optimal parameter vectors and fuzzy 
approximation error as:  
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where { }ii
T
iii M≤=Ω θθθ /  is the convex compact 

set which contains feasible parameter sets for *
iθ . 

Define the parameter error as iii θθ −=Φ * . 
In the analysis to follow, we will use the fact that 

iii
T
iiiii wxxuu −Φ=− )(),(* ϕθ  where 

T
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]~,...,~,~[ ,2,1, ΦΦΦ=Φ are parameter vectors, 
T

miiiii i
x ],...,,[)( ,2,1, ϕϕϕϕ =  are defined above 

which is defined as a fuzzy basis function [5]. 
The dynamics equations of the thi subsystem can be 
written as: 

)]()(
)()()([

xubpeta
wxxxgbee

iihii
T
ii

iiiii
T
iiiiiii

∆−−−

+Φ+Λ= βϕ&
 (11) 

and iw  represent the fuzzy approximation error of 

the thi subsystem. 
 
Assumption 2:  We assume that, there exists a 
function 0)( >Τ iw x

i
such that: 

Nixwx iiwiii ≤≤∀Τ< 1   )()(β            (12) 
The direct adaptive fuzzy decentralized control that 
we have proposed in (7) can be classified as: 

[.]Pr ojii ηθ =&      (13) 
where [.]Pr oj is the projection operator [5] 
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where 0>iη , and 0>
iaη  are fixed adaptive gains. 

Theorem 1:  
Consider the nonlinear subsystem (1), suppose that 
assumptions 1-2 are satisfied.  If there exists a matrix 

0>= T
ii pp  satisfying the Lyapunov 

equation: 0=+Λ+Λ iiii
T
i Qpp  where 0>= T

ii QQ . 
The adaptive fuzzy decentralized controller law is 
chosen as (7) with parameter adaptation law (13)-
(15). Then the proposed fuzzy decentralized control 
scheme can guarantee that (i) all the variables of the 
closed-loop system are bounded and (ii) performance 
tracking is achieved.   
 
Proof: consider the following Lyapunov function for 
the thi subsystem: 
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Substituting (11) into (17), applying (12)-(14) and 
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so that if each 0* >iτ , we simply obtain 
2

*
))((1 xeQev i
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Now consider the composite system Lyapunov 
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=
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, where 
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iNiii qqq ],...,,[ 21=χ , let iλ  the real part of the 

eigenvalue of iQ , (20) may be written as 
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There exists sufficiently large *τ such that A , 
defined by (22), is positive definite, which implies 
that ∞∈ lV , and thus ∞∈ l2ψ . Also  

∫ ∫
∞ ∞

+−≤
0 0

constdtVdtAT &ψψ     (23) 

so that 22 l∈ψ . Since all of the signals are well 

defined, we also have id
ie ∞∈ l& so that 

∞∈≤= l& 222 // iii
T
ii eeeeedtd . Using 

Barbalat’s Lemma, we thus establish that 
0lim 2 =∞→ ψt , thus we are guaranteed 

asymptotically stable tracking for each of the 
subsystems. 
 
 
4 Indirect adaptive fuzzy decentralized 
control 
In this section, it is assumed that the function )( ii xf  
and )( ii xg are unknown. Take a universal fuzzy 

system )/(ˆ
iii xf θ with 

ixi Ux ∈ for some compact 
set 

ixU  to approximate the uncertain term 

)( ii xf where iθ  contains the tunable parameters. 
Here the linearly parameterized fuzzy model [8] is 
employed in the approximation procedure. Then we 
replace )( ii xf  and )( ii xg by the fuzzy system 

)/(ˆ
1iii xf θ and )/(ˆ 2iii xg θ  respectively, with 

singleton fuzzifier, center average defuzzifier, and 

product inference. The fuzzy system )/(ˆ
1iii xf θ  and 

)/(ˆ 2iii xg θ  can be expressed as:    
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where (.)
,
l

jiFµ  is the membership functions for 

iml ≤≤1  ( im is the number of rules ) and inj ≤≤1  
in this paper,  we present the decentralized adaptive 
fuzzy controller defined as  
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where fiu  is the fuzzy controller, introduced to 
perform the main control action, which is given by 
synthesizing fuzzy control rules from human experts 
and/or by trial and error designing tools. 
The decentralized fuzzy controller ifu is constructed 

from the following ki
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where kin ,  define the number of fuzzy sets kl
kiA , in 

kiU , ( kik nl ,1 ≤≤  and idk ≤≤1 ) such that for any 

kiki Ue ,, ∈ , there exists a fuzzy set jl
jiA ,  so that the 

memberships function 0)( ,
,

≠kiA
ejl

ji
µ . The centres of 

these fuzzy sets are adapted by the proposed low 
which will be defined below.   
According to the universal approximation theorem 
[6], there exist optimal approximation parameters 

*
1iθ and *

2iθ  such that )/(ˆ *
1iii xf θ  and )/(ˆ *

2iii xg θ can, 
respectively, approximate )( ii xf  and )( ii xg as best 
as possible. Define the optimal parameter vectors and 
fuzzy approximation errors 
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where 1iΩ  and 2iΩ  are the convex compact sets, 

which contain feasible parameter sets for *
1iθ  and 
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which denote the minimum approximation errors. 
Throughout this section we need the following 
assumption: 
 
Assumption 3: there exists a positive function 
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Substituting (26.) to (1), the tracking error dynamic 
equation can be written as 
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from  (24) and (30), (31) can be written as 

)](2/)(

)()()(

)([

2

1

xubpeta

xgxfux

xbee

iihii
T
ii

iiiiii
T
i

ii
T
iiiii

∆−−−

∆+∆+Φ

+Φ+Λ=

ϕ

ϕ&

      (34) 

where the parameter error vectors are defined as 
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The following update laws are now defined for the 
decentralized indirect adaptive controller:  
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parameters update low for the isolated system 
identifier (35)-(36) are used to estimate the dynamics 
of the subsystem under control. The update law (37) 
is designed to compensate for the effects of the 
representation error, where (38) is used to stabilize 
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iσ is positive constant.  

 
Theorem 2:  
Consider the nonlinear subsystem (1), with the 
assumptions 1 and 3 are satisfied. If there exists a 
matrix 0>= T

ii pp  satisfying the Lyapunov equation: 

0=+Λ+Λ iiii
T
i Qpp  where 0>= T

ii QQ . Then the 
proposed control(26) with adaptation laws (35-38) 
will ensure that, for Ni ,...,2,1= . (i) all the variables 
of the closed-loop system are bounded and (ii) 
performance tracking is achieved. 
 
Proof: take the error dynamic equation (34), and 
consider the Lyapunov function candidate 
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iiP ℜ∈ is a 
positive definite and symmetric matrix. 
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The time derivative of iv  along the error trajectory 
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ε ,where each 0>iε . Taking 

the derivate of V  gives  
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where iλ  is the real part of the eigenvalue of iQ . 

Define N
NK ℜ∈= ],...,,[ **

2
*
1

* τττ . 
Let { })(),...,( 1111 NNN QQdiagD λελε= and 

∑
=

=
N

i

T
iiiM

1
,χχε  so that ,ψψ AV T−≤&  where 

MDA
i
*
1

τ
−= . Then for some sufficiently 

large 0* >τ , the matrix A is positive define. The 
remainder of the theorem (2) follows as for the 
direct adaptive case. 
 
 
5 Simulation results 
a double-inverted pendulum connected by a spring 
can be considered as the simplified example of the 
large-scale system. Each pendulum may be 
positioned by a torque input iu applied by a 

servomotor at its base. It is assumed that both iφ and 

iφ& (angular position and rate) are available to the 
thi controller for 2,1=i .Fig.1.  

 

 
Fig.1. Two inverted pendulums connected by a 
spring. 
Consider a double-inverted pendulum model [10]. 
The equations which describe the motion of the 
pendulums are defined by 
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)sin(
4

)(
2

)sin()
4

(

12
2

2

2

2

2
21

2

2

2

1
22

x
j

kr
j
u

bl
j

krx
j

kr
j
grmx

++

−+−=&

  (47) 

where 111 φ=x  and 221 φ=x  are the angular 
displacements of the pendulums from vertical. The 
parameters kgm 21 =  and  kgm 5.22 =  are the 
pendulum end masses, kgj 5.01 =  and kgj 625.02 =  
are the moments of inertia, the constant of connecting 
spring is mNk /100= , the pendulum height is 
r=0.5m, the natural length of the spring is ml 5.0=  
and the gravitational acceleration is 2/81.9 smg = . 
The distance between the pendulum hinges is defined 
as mb 4.0= (with lb <  in this example, so that the 
pendulum links repels each other when both are in the 
upright position (Fig 1). 
In (45) and (47)  
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)sin(
4

)(
2

)( 21
1

2

1
1 x

j
krbl

j
krx +−=∆ , 

)sin(
4

)(
2

)( 12
2

2

2
2 x

j
krbl

j
krx +−=∆ ,  

the motion equations fit the format of system (1). 
Here we will attempt to drive the angular positions 
to zero, so that iie φ−=  (i.e., 021 == rr yy ) for 

2,1=i  
To construct the fuzzy approximators ),( iii xu θ in 

(9) and )/(ˆ 1iiij x θα , )/(ˆ 2iiij x θβ  in (24), we define 
three fuzzy sets for component of each 

),( 12111 xxx =  and ),( 22212 xxx =  with labels 1
ijxA , 

2
ijxA , 3

ijxA  , 4
ijxA and 5

ijxA  characterized by: 

))8.0(exp()( 2
1 +−= ijijA xx
ijx

µ

))4.0(exp()( 2
2 +−= ijijA xx
ijx

µ

))(exp()( 2
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ijx

−=µ

))4.0(exp()( 2
4 −−= ijijA xx
ijx

µ

))8.0(exp()( 2
5 −−= ijijA xx
ijx

µ  

with 5, =jin , 2,1=j  and 2,1=i . 

Defining 25 fuzzy rules, in the following linguistic 
description: 

l
i
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j
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ii
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1

1 21
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ikl

ikxAi xD Cµ ,     

T
iiiiiiii xxxx ])/D( ., . . , )/D( ,)/D([)( i25,i2,i1, ϕϕϕϕ =  

we can construct the fuzzy system (7) and (24) 
respectively, as follows: we choose 

001.0  ,01.0 ==
iai ηη  and 

15.0  ,0001.0  ,001.0  ,001.0 i21 ==== σηηη
iaii , 

)10,10(diagQi = ,  and each iΛ  so that 

44)( 2 ++=
∧

ςςςL   has roots at )2,2( −− . 

Choose the initial conditions to be the same for both 
direct and indirect approaches in the simulations: 

TTxxxx )1,1,1,1(),,,( 22211211 = ), 12521 0 xii ==θθ and  
] 1750502500250507501[  . . .  . -. -. --i =Γ . For the direct 

approach, the simulation results are shown in Fig 2. 
The simulation results are given in Fig.3 
Both direct and indirect fuzzy decentralized 
controllers achieve good performance, as can be seen 
from the simulation results. 
 

 
Fig. 2, Control of the pendulums using the 
proposed direct adaptive decentralized technique. 

 
Fig. 3, Control of the pendulums using the proposed 
indirect adaptive decentralized technique.

 
 
Conclusion 
In the course of this paper, we have presented an 
adaptive output-feedback fuzzy decentralized 
control for a class of large-scale nonlinear  
 

 
 
 
systems. In both, direct and indirect adaptive 
proposed design methods, fuzzy logic systems are 
used to estimate the part the decentralized adaptive 
fuzzy controller and unknown nonlinear dynamics 
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without knowing bounds of interconnections. 
Furthermore, the stability of nonlinear 
interconnected systems is also guaranteed and 
ensures asymptotic tracking using only local 
measurement. The proposed approaches are 
simple without complex algorithms. Simulations 
have shown that the proposed controls 
methodology is effective, with guaranteed 
stability and satisfying performance. 
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